IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.5836.html
   My bibliography  Save this paper

Semiparametric stochastic volatility modelling using penalized splines

Author

Listed:
  • Roland Langrock
  • Th'eo Michelot
  • Alexander Sohn
  • Thomas Kneib

Abstract

Stochastic volatility (SV) models mimic many of the stylized facts attributed to time series of asset returns, while maintaining conceptual simplicity. The commonly made assumption of conditionally normally distributed or Student-t-distributed returns, given the volatility, has however been questioned. In this manuscript, we introduce a novel maximum penalized likelihood approach for estimating the conditional distribution in an SV model in a nonparametric way, thus avoiding any potentially critical assumptions on the shape. The considered framework exploits the strengths both of the powerful hidden Markov model machinery and of penalized B-splines, and constitutes a powerful and flexible alternative to recently developed Bayesian approaches to semiparametric SV modelling. We demonstrate the feasibility of the approach in a simulation study before outlining its potential in applications to three series of returns on stocks and one series of stock index returns.

Suggested Citation

  • Roland Langrock & Th'eo Michelot & Alexander Sohn & Thomas Kneib, 2013. "Semiparametric stochastic volatility modelling using penalized splines," Papers 1308.5836, arXiv.org, revised Jun 2014.
  • Handle: RePEc:arx:papers:1308.5836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.5836
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Daniel Kuhn & David Luenberger, 2010. "Analysis of the rebalancing frequency in log-optimal portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 221-234.
    2. Michael A. H. Dempster & Igor V. Evstigneev & Klaus R. Schenk-hoppe, 2007. "Volatility-induced financial growth," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 151-160.
    3. Robert Fernholz & Ioannis Karatzas & Constantinos Kardaras, 2005. "Diversity and relative arbitrage in equity markets," Finance and Stochastics, Springer, vol. 9(1), pages 1-27, January.
    4. Eckhard Platen & Renata Rendek, 2010. "Approximating the Numeraire Portfolio by Naive Diversification," Research Paper Series 281, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29.
    6. Fernholz, Robert & Shay, Brian, 1982. " Stochastic Portfolio Theory and Stock Market Equilibrium," Journal of Finance, American Finance Association, vol. 37(2), pages 615-624, May.
    7. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.5836. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.