IDEAS home Printed from
   My bibliography  Save this paper

An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit


  • Runhuan Feng
  • Hans W. Volkmer


In this paper we explore an identity in distribution of hitting times of a finite variation process (Yor's process) and a diffusion process (geometric Brownian motion with affine drift), which arise from various applications in financial mathematics. As a result, we provide analytical solutions to the fair charge of variable annuity guaranteed minimum withdrawal benefit (GMWB) from a policyholder's point of view, which was only previously obtained in the literature by numerical methods. We also use complex inversion methods to derive analytical solutions to the fair charge of the GMWB from an insurer's point of view, which is used in the market practice, however, based on Monte Carlo simulations. Despite of their seemingly different formulations, we can prove under certain assumptions the two pricing approaches are equivalent.

Suggested Citation

  • Runhuan Feng & Hans W. Volkmer, 2013. "An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit," Papers 1307.7070,
  • Handle: RePEc:arx:papers:1307.7070

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375.
    2. M. Schroder & P. Carr, 2003. "Bessel processes, the integral of geometric Brownian motion, and Asian options," Papers math/0311280,
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.7070. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.