IDEAS home Printed from
   My bibliography  Save this paper

An Information-Theoretic Test for Dependence with an Application to the Temporal Structure of Stock Returns


  • Galen Sher
  • Pedro Vitoria


Information theory provides ideas for conceptualising information and measuring relationships between objects. It has found wide application in the sciences, but economics and finance have made surprisingly little use of it. We show that time series data can usefully be studied as information -- by noting the relationship between statistical redundancy and dependence, we are able to use the results of information theory to construct a test for joint dependence of random variables. The test is in the same spirit of those developed by Ryabko and Astola (2005, 2006b,a), but differs from these in that we add extra randomness to the original stochatic process. It uses data compression to estimate the entropy rate of a stochastic process, which allows it to measure dependence among sets of random variables, as opposed to the existing econometric literature that uses entropy and finds itself restricted to pairwise tests of dependence. We show how serial dependence may be detected in S&P500 and PSI20 stock returns over different sample periods and frequencies. We apply the test to synthetic data to judge its ability to recover known temporal dependence structures.

Suggested Citation

  • Galen Sher & Pedro Vitoria, 2013. "An Information-Theoretic Test for Dependence with an Application to the Temporal Structure of Stock Returns," Papers 1304.0353,, revised May 2013.
  • Handle: RePEc:arx:papers:1304.0353

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(01), pages 1-31, February.
    2. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    3. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    5. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    6. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," Review of Economic Studies, Oxford University Press, vol. 81(2), pages 608-650.
    7. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    8. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    9. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    10. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    11. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    12. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906,, revised Jan 2018.
    13. Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
    14. Leeb, Hannes & P tscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 21-59, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1304.0353. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.