IDEAS home Printed from
   My bibliography  Save this paper

Consumer finance data generator - a new approach to Credit Scoring technique comparison


  • Karol Przanowski
  • Jolanta Mamczarz


This paper aims to present a general idea of method comparison of Credit Scoring techniques. Any scorecard can be made in various methods based on variable transformations in the logistic regression model. To make a comparison and come up with the proof that one technique is better than another is a big challenge due to the limited availability of data. The same conclusion cannot be guaranteed when using other data from another source. The following research challenge can therefore be formulated: how should the comparison be managed in order to get general results that are not biased by particular data? The solution may be in the use of various random data generators. The data generator uses two approaches: transition matrix and scorings. Here are presented both: results of comparison methods and the methodology of these comparison techniques creating. Before building a new model the modeler can undertake a comparison exercise that aims at identifying the best method in the case of the particular data. Here are presented various measures of predictive model like: Gini, Delta Gini, VIF and Max p-value, emphasizing the multi-criteria problem of a "Good model". The idea that is being suggested is of particular use in the model building process where there are defined complex criteria trying to cover the important problems of model stability over a period of time, in order to avoid a crisis. Some arguments for choosing Logit or WOE approach as the best scorecard technique are presented.

Suggested Citation

  • Karol Przanowski & Jolanta Mamczarz, 2012. "Consumer finance data generator - a new approach to Credit Scoring technique comparison," Papers 1210.0057,
  • Handle: RePEc:arx:papers:1210.0057

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.0057. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.