IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.3455.html
   My bibliography  Save this paper

Applications of a constrained mechanics methodology in economics

Author

Listed:
  • Jitka Janov'a

Abstract

The paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for the undergraduate physics education. The aim of the paper is: 1. to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even on the undergraduate level and 2. to enable the students to understand deeper the principles and methods routinely used in mechanics by looking at the well known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity dependent constraint using the vakonomic approach. The specifics of the solution interpretation in economics compared to mechanics is discussed in detail, a discussion of the nonholonomic and vakonomic approaches to constrained problems in mechanics and economics is provided and an economic interpretation of the Lagrange multipliers (possibly surprising for the students of physics) is carefully explained. The paper can be used by the undergraduate students of physics interested in interdisciplinary physics applications to get in touch with current scientific approach to economics based on a physical background or by university teachers as an attractive supplement to the classical mechanics lessons.

Suggested Citation

  • Jitka Janov'a, 2011. "Applications of a constrained mechanics methodology in economics," Papers 1106.3455, arXiv.org.
  • Handle: RePEc:arx:papers:1106.3455
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.3455
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    2. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    3. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag`es, 2009. "Optimal split of orders across liquidity pools: a stochastic algorithm approach," Papers 0910.1166, arXiv.org, revised May 2010.
    4. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    5. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    6. Thierry Foucault & Albert J. Menkveld, 2008. "Competition for Order Flow and Smart Order Routing Systems," Journal of Finance, American Finance Association, vol. 63(1), pages 119-158, February.
    7. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    8. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    9. Gur Huberman & Werner Stanzl, 2005. "Optimal Liquidity Trading," Review of Finance, Springer, vol. 9(2), pages 165-200, June.
    10. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    11. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.3455. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.