IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.4384.html
   My bibliography  Save this paper

Conditional Density Models for Asset Pricing

Author

Listed:
  • Damir Filipovi'c
  • Lane P. Hughston
  • Andrea Macrina

Abstract

We model the dynamics of asset prices and associated derivatives by consideration of the dynamics of the conditional probability density process for the value of an asset at some specified time in the future. In the case where the price process is driven by Brownian motion, an associated "master equation" for the dynamics of the conditional probability density is derived and expressed in integral form. By a "model" for the conditional density process we mean a solution to the master equation along with the specification of (a) the initial density, and (b) the volatility structure of the density. The volatility structure is assumed at any time and for each value of the argument of the density to be a functional of the history of the density up to that time. In practice one specifies the functional modulo sufficient parametric freedom to allow for the input of additional option data apart from that implicit in the initial density. The scheme is sufficiently flexible to allow for the input of various types of data depending on the nature of the options market and the class of valuation problem being undertaken. Various examples are studied in detail, with exact solutions provided in some cases.

Suggested Citation

  • Damir Filipovi'c & Lane P. Hughston & Andrea Macrina, 2010. "Conditional Density Models for Asset Pricing," Papers 1010.4384, arXiv.org, revised Nov 2011.
  • Handle: RePEc:arx:papers:1010.4384
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.4384
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.4384. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.