IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.2184.html
   My bibliography  Save this paper

Do your volatility smiles take care of extreme events?

Author

Listed:
  • L. Spadafora
  • G. P. Berman
  • F. Borgonovi

Abstract

In the Black-Scholes context we consider the probability distribution function (PDF) of financial returns implied by volatility smile and we study the relation between the decay of its tails and the fitting parameters of the smile. We show that, considering a scaling law derived from data, it is possible to get a new fitting procedure of the volatility smile that considers also the exponential decay of the real PDF of returns observed in the financial markets. Our study finds application in the Risk Management activities where the tails characterization of financial returns PDF has a central role for the risk estimation.

Suggested Citation

  • L. Spadafora & G. P. Berman & F. Borgonovi, 2010. "Do your volatility smiles take care of extreme events?," Papers 1010.2184, arXiv.org.
  • Handle: RePEc:arx:papers:1010.2184
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.2184
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Urrea, Rafael, 2007. "Scale invariance in the 2003–2005 Iraq conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 291-301.
    2. D. COLANDER & al., 2010. "The Financial Crisis and the Systemic Failure of Academic Economics," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 6.
    3. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    4. Repetowicz, Przemysław & Hutzler, Stefan & Richmond, Peter, 2005. "Dynamics of money and income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 641-654.
    5. Clementi, F. & Di Matteo, T. & Gallegati, M. & Kaniadakis, G., 2008. "The κ-generalized distribution: A new descriptive model for the size distribution of incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3201-3208.
    6. F. Clementi & M. Gallegati & G. Kaniadakis, 2007. "κ-generalized statistics in personal income distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 187-193, May.
    7. Anand Banerjee & Victor M. Yakovenko, 2009. "Universal patterns of inequality," Papers 0912.4898, arXiv.org, revised Apr 2010.
    8. F. Clementi & M. Gallegati & G. Kaniadakis, 2009. "A k-generalized statistical mechanics approach to income analysis," Papers 0902.0075, arXiv.org, revised Feb 2009.
    9. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    10. Nicola Scafetta & Sergio Picozzi & Bruce West, 2004. "An out-of-equilibrium model of the distributions of wealth," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 353-364.
    11. Schinckus, Christophe, 2010. "Is econophysics a new discipline? The neopositivist argument," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3814-3821.
    12. Gallegati, Mauro & Keen, Steve & Lux, Thomas & Ormerod, Paul, 2006. "Worrying trends in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 1-6.
    13. Jean-Philippe Bouchaud, 2008. "Economics need a scientific revolution," Papers 0810.5306, arXiv.org.
    14. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    15. G. Kaniadakis, 2009. "Maximum entropy principle and power-law tailed distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 3-13, July.
    16. N. J. Moura & M. B. Ribeiro, 2009. "Evidence for the Gompertz curve in the income distribution of Brazil 1978–2005," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(1), pages 101-120, January.
    17. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    18. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    19. Moura, Newton J. & Ribeiro, Marcelo B., 2006. "Zipf law for Brazilian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 441-448.
    20. Solomon, Sorin & Richmond, Peter, 2001. "Power laws of wealth, market order volumes and market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 188-197.
    21. Sorin Solomon, 1998. "Stochastic Lotka-Volterra Systems of Competing Auto-Catalytic Agents Lead Generically to Truncated Pareto Power Wealth Distribution, Truncated Levy Distribution of Market Returns, Clustered Volatility," Papers cond-mat/9803367, arXiv.org.
    22. Nicola Scafetta & Sergio Picozzi & Bruce J. West, 2004. "An out-of-equilibrium model of the distributions of wealth," Papers cond-mat/0403045, arXiv.org.
    23. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    24. Jean-Philippe Bouchaud, 2009. "The (unfortunate) complexity of the economy," Papers 0904.0805, arXiv.org.
    25. Coelho, Ricardo & Richmond, Peter & Barry, Joseph & Hutzler, Stefan, 2008. "Double power laws in income and wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3847-3851.
    26. Keen, Steve, 2003. "Standing on the toes of pygmies:," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 108-116.
    27. Schinckus, Christophe, 2009. "Economic uncertainty and econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4415-4423.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.2184. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.