IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymptotic equivalence in Lee's moment formulas for the implied volatility and Piterbarg's conjecture

  • Archil Gulisashvili
Registered author(s):

    The asymptotic behavior of the implied volatility associated with a general call pricing function has been extensively studied in the last decade. The main topics discussed in this paper are Lee's moment formulas for the implied volatility, and Piterbarg's conjecture, describing how the implied volatility behaves in the case where all the moments of the stock price are finite. We find various conditions guaranteeing the existence of the limit in Lee's moment formulas. We also prove a modified version of Piterbarg's conjecture and provide a non-restrictive sufficient condition for the validity of this conjecture in its original form. The asymptotic formulas obtained in the paper are applied to the implied volatility in the CEV model and in the Heston model perturbed by a compound Poisson process with double exponential law for jump sizes.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1007.5353
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1007.5353.

    as
    in new window

    Length:
    Date of creation: Jul 2010
    Date of revision:
    Handle: RePEc:arx:papers:1007.5353
    Contact details of provider: Web page: http://arxiv.org/

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1007.5353. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.