IDEAS home Printed from
   My bibliography  Save this paper

A general method for debiasing a Monte Carlo estimator


  • Don McLeish


Consider a process, stochastic or deterministic, obtained by using a numerical integration scheme, or from Monte-Carlo methods involving an approximation to an integral, or a Newton-Raphson iteration to approximate the root of an equation. We will assume that we can sample from the distribution of the process from time 0 to finite time n. We propose a scheme for unbiased estimation of the limiting value of the process, together with estimates of standard error and apply this to examples including numerical integrals, root-finding and option pricing in a Heston Stochastic Volatility model. This results in unbiased estimators in place of biased ones i nmany potential applications.

Suggested Citation

  • Don McLeish, 2010. "A general method for debiasing a Monte Carlo estimator," Papers 1005.2228,, revised Jun 2010.
  • Handle: RePEc:arx:papers:1005.2228

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull-White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. A. Gulisashvili & E. M. Stein, 2009. "Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models," Papers 0906.0392,
    5. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    6. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394,
    7. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    8. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1005.2228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.