IDEAS home Printed from
   My bibliography  Save this paper

Price Trackers Inspired by Immune Memory


  • William Wilson
  • Phil Birkin
  • Uwe Aickelin


In this paper we outline initial concepts for an immune inspired algorithm to evaluate price time series data. The proposed solution evolves a short term pool of trackers dynamically through a process of proliferation and mutation, with each member attempting to map to trends in price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. Tests are performed to examine the algorithm's ability to successfully identify trends in a small data set. The influence of the long term memory pool is then examined. We find the algorithm is able to identify price trends presented successfully and efficiently.

Suggested Citation

  • William Wilson & Phil Birkin & Uwe Aickelin, 2010. "Price Trackers Inspired by Immune Memory," Papers 1004.3939,
  • Handle: RePEc:arx:papers:1004.3939

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    3. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    4. Sugita, Katsuhiro, 2002. "Testing for Cointegration Rank Using Bayes Factors," Royal Economic Society Annual Conference 2002 171, Royal Economic Society.
    5. Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
    6. BAUWENS, Luc & LUBRANO , Michel, 1994. "Identification Restrictions and Posterior Densities in Cointegrated Gaussian VAR Systems," CORE Discussion Papers 1994018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. BAUWENS, Luc & GIOT, Pierre, 1997. "A Gibbs sampling approach to cointegration," CORE Discussion Papers 1997016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Katsuhiro Sugita, 2009. "A Monte Carlo comparison of Bayesian testing for cointegration rank," Economics Bulletin, AccessEcon, vol. 29(3), pages 2145-2151.
    9. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    10. J. Vermaak & C. Andrieu & A. Doucet & S. J. Godsill, 2004. "Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 785-809, November.
    11. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    12. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    13. Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004. "Bayesian Approaches to Cointegration," Discussion Papers in Economics 04/27, Department of Economics, University of Leicester.
    14. Sugita, Katsuhiro, 2002. "Testing For Cointegration Rank Using Bayes Factors," The Warwick Economics Research Paper Series (TWERPS) 654, University of Warwick, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.3939. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.