IDEAS home Printed from
   My bibliography  Save this paper

Error Estimates for Multinomial Approximations of American Options in Merton's Model


  • Yan Dolinsky


We derive error estimates for multinomial approximations of American options in a multidimensional jump--diffusion Merton's model. We assume that the payoffs are Markovian and satisfy Lipschitz type conditions. Error estimates for such type of approximations were not obtained before. Our main tool is the strong approximations theorems for i.i.d. random vectors which were obtained [14]. For the multidimensional Black--Scholes model our results can be extended also to a general path dependent payoffs which satisfy Lipschitz type conditions. For the case of multinomial approximations of American options for the Black--Scholes model our estimates are a significant improvement of those which were obtained in [8] (for game options in a more general setup)

Suggested Citation

  • Yan Dolinsky, 2010. "Error Estimates for Multinomial Approximations of American Options in Merton's Model," Papers 1004.1575,
  • Handle: RePEc:arx:papers:1004.1575

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    2. Koichi Matsumoto, 2006. "Optimal portfolio of low liquid assets with a log-utility function," Finance and Stochastics, Springer, vol. 10(1), pages 121-145, January.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Alessandra Cretarola & Fausto Gozzi & Huyên Pham & Peter Tankov, 2011. "Optimal consumption policies in illiquid markets," Finance and Stochastics, Springer, vol. 15(1), pages 85-115, January.
    5. L.C.G. Rogers, 2001. "The relaxed investor and parameter uncertainty," Finance and Stochastics, Springer, vol. 5(2), pages 131-154.
    6. Huyên Pham & Peter Tankov, 2008. "A Model Of Optimal Consumption Under Liquidity Risk With Random Trading Times," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 613-627.
    7. Luz Rocío Sotomayor & Abel Cadenillas, 2009. "Explicit Solutions Of Consumption-Investment Problems In Financial Markets With Regime Switching," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 251-279.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.1575. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.