IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Martingale representation for Poisson processes with applications to minimal variance hedging

  • Guenter Last
  • Mathew D. Penrose
Registered author(s):

    We consider a Poisson process $\eta$ on a measurable space $(\BY,\mathcal{Y})$ equipped with a partial ordering, assumed to be strict almost everwhwere with respect to the intensity measure $\lambda$ of $\eta$. We give a Clark-Ocone type formula providing an explicit representation of square integrable martingales (defined with respect to the natural filtration associated with $\eta$), which was previously known only in the special case, when $\lambda$ is the product of Lebesgue measure on $\R_+$ and a $\sigma$-finite measure on another space $\BX$. Our proof is new and based on only a few basic properties of Poisson processes and stochastic integrals. We also consider the more general case of an independent random measure in the sense of It\^o of pure jump type and show that the Clark-Ocone type representation leads to an explicit version of the Kunita-Watanabe decomposition of square integrable martingales. We also find the explicit minimal variance hedge in a quite general financial market driven by an independent random measure.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1001.3972.

    in new window

    Date of creation: Jan 2010
    Date of revision:
    Handle: RePEc:arx:papers:1001.3972
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1001.3972. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.