IDEAS home Printed from
   My bibliography  Save this paper

Appraisal of a contour integral method for the Black-Scholes and Heston equations


  • K. J. in 't Hout
  • J. A. C. Weideman


A contour integral method recently proposed by Weideman [IMA J. Numer. Anal., to appear] for integrating semi-discrete advection-diffusion PDEs, is extended for application to some of the important equations of mathematical finance. Using estimates for the numerical range of the spatial operator, optimal contour parameters are derived theoretically and tested numerically. Test examples presented are the Black-Scholes PDE in one space dimension and the Heston PDE in two dimensions. In the latter case efficiency is compared to ADI splitting schemes for solving this problem. In the examples it is found that the contour integral method is superior for the range of medium to high accuracy requirements. Further improvements to the current implementation of the contour integral method are suggested.

Suggested Citation

  • K. J. in 't Hout & J. A. C. Weideman, 2009. "Appraisal of a contour integral method for the Black-Scholes and Heston equations," Papers 0912.0434,, revised Apr 2011.
  • Handle: RePEc:arx:papers:0912.0434

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    2. Arai, Takuji, 2005. "Some properties of the variance-optimal martingale measure for discontinuous semimartingales," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 163-170, September.
    3. Damir Filipović & Stefan Tappe, 2008. "Existence of Lévy term structure models," Finance and Stochastics, Springer, vol. 12(1), pages 83-115, January.
    4. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52.
    5. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2008. "Analysis of Fourier transform valuation formulas and applications," Papers 0809.3405,, revised Sep 2009.
    6. Takuji Arai, 2005. "An extension of mean-variance hedging to the discontinuous case," Finance and Stochastics, Springer, vol. 9(1), pages 129-139, January.
    7. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2012. "Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets," Papers 1205.4089,
    8. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.0434. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.