IDEAS home Printed from
   My bibliography  Save this paper

Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends


  • Benjamin Jourdain


  • Michel Vellekoop


We analyze the regularity of the optimal exercise boundary for the American Put option when the underlying asset pays a discrete dividend at a known time $t_d$ during the lifetime of the option. The ex-dividend asset price process is assumed to follow Black-Scholes dynamics and the dividend amount is a deterministic function of the ex-dividend asset price just before the dividend date. The solution to the associated optimal stopping problem can be characterised in terms of an optimal exercise boundary which, in contrast to the case when there are no dividends, may no longer be monotone. In this paper we prove that when the dividend function is positive and concave, then the boundary is non-increasing in a left-hand neighbourhood of $t_d$, and tends to $0$ as time tends to $t_d^-$ with a speed that we can characterize. When the dividend function is linear in a neighbourhood of zero, then we show continuity of the exercise boundary and a high contact principle in the left-hand neighbourhood of $t_d$. When it is globally linear, then right-continuity of the boundary and the high contact principle are proved to hold globally. Finally, we show how all the previous results can be extended to multiple dividend payment dates in that case.

Suggested Citation

  • Benjamin Jourdain & Michel Vellekoop, 2009. "Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends," Papers 0911.5117,, revised Jun 2010.
  • Handle: RePEc:arx:papers:0911.5117

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0911.5117. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.