IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0911.0113.html
   My bibliography  Save this paper

Study of the risk-adjusted pricing methodology model with methods of Geometrical Analysis

Author

Listed:
  • Ljudmila A. Bordag

Abstract

Families of exact solutions are found to a nonlinear modification of the Black-Scholes equation. This risk-adjusted pricing methodology model (RAPM) incorporates both transaction costs and the risk from a volatile portfolio. Using the Lie group analysis we obtain the Lie algebra admitted by the RAPM equation. It gives us the possibility to describe an optimal system of subalgebras and correspondingly the set of invariant solutions to the model. In this way we can describe the complete set of possible reductions of the nonlinear RAPM model. Reductions are given in the form of different second order ordinary differential equations. In all cases we provide solutions to these equations in an exact or parametric form. We discuss the properties of these reductions and the corresponding invariant solutions.

Suggested Citation

  • Ljudmila A. Bordag, 2009. "Study of the risk-adjusted pricing methodology model with methods of Geometrical Analysis," Papers 0911.0113, arXiv.org, revised Feb 2010.
  • Handle: RePEc:arx:papers:0911.0113
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0911.0113
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0911.0113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.