IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Stock Market Trading Via Stochastic Network Optimization

Listed author(s):
  • Michael J. Neely
Registered author(s):

    We consider the problem of dynamic buying and selling of shares from a collection of $N$ stocks with random price fluctuations. To limit investment risk, we place an upper bound on the total number of shares kept at any time. Assuming that prices evolve according to an ergodic process with a mild decaying memory property, and assuming constraints on the total number of shares that can be bought and sold at any time, we develop a trading policy that comes arbitrarily close to achieving the profit of an ideal policy that has perfect knowledge of future events. Proximity to the optimal profit comes with a corresponding tradeoff in the maximum required stock level and in the timescales associated with convergence. We then consider arbitrary (possibly non-ergodic) price processes, and show that the same algorithm comes close to the profit of a frame based policy that can look a fixed number of slots into the future. Our analysis uses techniques of Lyapunov Optimization that we originally developed for stochastic network optimization problems.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 0909.3891.

    in new window

    Date of creation: Sep 2009
    Handle: RePEc:arx:papers:0909.3891
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0909.3891. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.