IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Haar Wavelets-Based Approach for Quantifying Credit Portfolio Losses

  • Josep J. Masdemont
  • Luis Ortiz-Gracia
Registered author(s):

    This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelets basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. In fact, we demonstrate that only a few coefficients of the approximation are needed, so VaR can be reached quickly. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. The Haar wavelets method is fast, accurate and robust to deal with small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 0904.4620.

    in new window

    Date of creation: Apr 2009
    Date of revision:
    Handle: RePEc:arx:papers:0904.4620
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.4620. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.