IDEAS home Printed from https://ideas.repec.org/p/ams/cdws01/4a.3.html
   My bibliography  Save this paper

A Distribution-Based Method For Evaluating Multiscaling In Finance

Author

Listed:
  • Sergio Bianchi

    (University of Cassino)

Abstract

An increasing attention is being payed to the scaling behaviour of stock returns. Several reasons motivate this interest: the assumption of self-affinity is implicit both in the standard financial theory (which states that the self-affinity parameter H equals 1/2) and in less consolidate frameworks, such as the fractal gaussian models (for whom H belongs to the interval (0,1)). The scaling structure of prices is usually deduced by analysing the sample moments, but this approach could be misleading because of many reasons, the most ''embarassing'' one being the assumption of existence of the considered moments. Since self-affinity allows to distinguish between two large classes of processes (the fractal - uniscaling - ones and the multifractal - multiscaling - ones), both suggested as models in finance, we reformulate this notion by means of an equivalent definition based on a distance built on the set of the rescaled probability distribution functions generated by the scaling law which defines the notion of self-affinity itself. A general characterization of our measure provides two necessary conditions of self-affinity: monotonicity with respect to both the parameter H and the maximum lag of an increasing sequence of trading horizon sets. We also give the closed expression of our measure when the process is the fractional brownian motion. Furthermore, a proper choice of the metric allows to apply the well-known Kolmogorov-Smirnov goodness of fit test in order to evaluate the statistical significance of the self-affinity measure, also in the case of dependent data whenever uniscaling holds. Finally, an empirical analysis is performed on several market indices. The analysis shows that, for the considered horizons (from one up to fifty trading days), uniscaling does not generally hold in financial markets.

Suggested Citation

  • Sergio Bianchi, 2001. "A Distribution-Based Method For Evaluating Multiscaling In Finance," CeNDEF Workshop Papers, January 2001 4A.3, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  • Handle: RePEc:ams:cdws01:4a.3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ams:cdws01:4a.3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/cnuvanl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.