IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2017014.html

Weak Diffusion Limits of Dynamic Conditional Correlation Models

Author

Listed:
  • Hafner, Christian
  • Laurent, Sebastien
  • Violante, Francesco

Abstract

The properties of dynamic conditional correlation (DCC) models, introduced more than a decade ago, are still not entirely known. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered for the rate of convergence of the parameters, obtaining time-varying but deterministic variances and/or correlations. A Monte Carlo experiment confirms that the often used quasi approximate maximum likelihood (QAML) method to estimate the diffusion parameters is inconsistent for any fixed frequency, but that it may provide reasonable approximations for sufficiently large frequencies and sample sizes.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hafner, Christian & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Reprints ISBA 2017014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2017014
    Note: In : Econometric Theory, vol. 33, p. 691-716 (2017)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Chen & Yixuan Li & Renfang Tian, 2023. "A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    2. Haoyuan Wang & Chen Liu & Minh-Ngoc Tran & Chao Wang, 2025. "Deep Learning Enhanced Multivariate GARCH," Papers 2506.02796, arXiv.org.
    3. Yinhao Wu & Ping He, 2024. "The continuous-time limit of quasi score-driven volatility models," Papers 2409.14734, arXiv.org, revised Jun 2025.
    4. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    5. Ding, Y., 2020. "Diffusion Limits of Real-Time GARCH," Cambridge Working Papers in Economics 20112, Faculty of Economics, University of Cambridge.
    6. Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
    7. Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits Of Dynamic Conditional Correlation Models," Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2017014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.