IDEAS home Printed from https://ideas.repec.org/p/ags/sbrfsr/109197.html
   My bibliography  Save this paper

Aplicação Do Modelo Arima À Previsão Do Preço Das Commodities Agrícolas Brasileiras

Author

Listed:
  • Pinto, Pablo Aurelio Lacerda De Almeida
  • Pereira, Elenildes Santana
  • Oliveira, Marianne Costa
  • Santos, Jose Marcio Dos
  • Maia, Sinezio Fernandes

Abstract

Atualmente as commodities representam uma significativa parcela do Produto Interno Brasileiro. Entretanto, o volume exportado pode sofrer influência significativa pelo preço apresentado no cenário internacional, alterando sensivelmente a remuneração do produtor. Dentro deste contexto, o presente trabalho se propõe a analisar o comportamento dos preços recebidos pelo produtor das principais commodities agrícola brasileiras: cacau, café, cana de açúcar, laranja e soja. Para tanto, procurou-se realizar uma previsão ex-ante para os preços destes produtos a partir da metodologia ARIMA. Os resultados obtidos fornecem uma ferramenta de análise para o mercado destas commodities, na medida em que demonstram a tendência dos preços para um horizonte de curto prazo, servindo de auxílio à tomada de decisão de agentes que comercializam estes bens.-------------------------------------------------Actually the commodities represent one significant part of the Brazilian GIP. However the exported volume may suffer significant influence in reason of the price presented by the international scenario, changing sensitively the producer remuneration. Inside of this context, the present paper proposes to analyze the behavior of the received prices by the producer of the main Brazilian agricultural commodities: soy beans, coffee, sugar, orange and cacao. To reach that goal, it was searched to realize one prevision ex-ante for the prices of those products by the ARIMA methodology. The results obtained, give one analyses tool for the markets of those commodities, in the direction which demonstrates the tendency of prices to a short-run horizon, serving as relief to the decision making of the agents which commercialize those goods.

Suggested Citation

  • Pinto, Pablo Aurelio Lacerda De Almeida & Pereira, Elenildes Santana & Oliveira, Marianne Costa & Santos, Jose Marcio Dos & Maia, Sinezio Fernandes, 2008. "Aplicação Do Modelo Arima À Previsão Do Preço Das Commodities Agrícolas Brasileiras," 46th Congress, July 20-23, 2008, Rio Branco, Acre, Brasil 109197, Sociedade Brasileira de Economia, Administracao e Sociologia Rural (SOBER).
  • Handle: RePEc:ags:sbrfsr:109197
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/109197
    Download Restriction: no

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:sbrfsr:109197. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/soberea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.