IDEAS home Printed from https://ideas.repec.org/p/ags/quedwp/273743.html

A necessary moment condition for the fractional functional central limit theorem

Author

Listed:
  • Johansen, Soren
  • Orregaard Nielsen, Morten

Abstract

We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x_{t}=Delta^{-d}u_{t}, where d in (-1/2,1/2) is the fractional integration parameter and u_{t} is weakly dependent. The classical condition is existence of q>max(2,(d+1/2)^{-1}) moments of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that under some relatively weak conditions on u_{t}, the existence of q=max(2,(d+1/2)^{-1}) is in fact necessary for the FCLT for fractionally integrated processes and that q>max(2,(d+1/2)^{-1}) moments are necessary and sufficient for more general fractional processes. Davidson and de Jong (2000) presented a fractional FCLT where only q>2 finite moments are assumed, which is remarkable because it is the only FCLT where the moment condition has been weakened relative to the earlier condition. As a corollary to our main theorem we show that their moment condition is not sufficient.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Johansen, Soren & Orregaard Nielsen, Morten, 2010. "A necessary moment condition for the fractional functional central limit theorem," Queen's Economics Department Working Papers 273743, Queen's University - Department of Economics.
  • Handle: RePEc:ags:quedwp:273743
    DOI: 10.22004/ag.econ.273743
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273743/files/qed_wp_1244.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    3. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    4. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    5. Mustafa R. K{i}l{i}nc{c} & Michael Massmann, 2024. "The modified conditional sum-of-squares estimator for fractionally integrated models," Papers 2404.12882, arXiv.org, revised Feb 2025.
    6. Morten Ørregaard Nielsen, 2015. "Asymptotics for the Conditional-Sum-of-Squares Estimator in Multivariate Fractional Time-Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 154-188, March.
    7. Man Wang & Ngai Hang Chan, 2016. "Testing for the Equality of Integration Orders of Multiple Series," Econometrics, MDPI, vol. 4(4), pages 1-10, December.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:273743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.