IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimal Hedging With Views: A Bayesian Approach

Listed author(s):
  • Shi, Wei
  • Irwin, Scott H.

The optimal hedging model has become the standard theoretical model of normative hedging behavior due to its intuitive tradeoff of expected return with risk, its effcient use of information and its easy implementation. In practice, the model can be easily implemented with the Parameter Certainty Equivalent procedure, which substitutes sample estimates for the true but unknown model parameters. But subjective views, which refer to opinions concerning the directions of market returns of the assets involved in hedging decisions, are either completely ignored or handled in an ad hoc and unsatisfactory manner within the optimal hedging model. Given the widespread use of subjective views in hedging practice and the potential economic benefit of selective hedging, the lack of accommodation of subjective views in the optimal hedging model is a serious problem and could hamper the model's application in risk management practice. With an empirical Bayesian approach adopted, this study proposes an alternative Bayesian optimal hedging model, in which a hedger can adjust his/her optimal hedging position (ratio) according to his/her view(s) on the expected returns of assets under consideration. Like Lence and Hayes' Bayesian optimal hedging model (1994a, 1994b), the optimal hedging position is also determined by mean-variance optimization conditioned on the predictive expectation vector and predictive covariance matrix of asset returns, but unlike their model, the number and type of subjective views that can be expressed is quite flexible because of the adoption of an empirical Bayesian approach. The empirical Bayesian optimal hedging model provides practitioners with a theoretically intuitive yet quantitatively rigorous framework to blend subjective views and the market consensus estimated from sample data according to their relative confidence levels.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management in its series 2004 Conference, April 19-20, 2004, St. Louis, Missouri with number 19009.

in new window

Date of creation: 2004
Handle: RePEc:ags:ncrfou:19009
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ags:ncrfou:19009. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.