Author
Listed:
- Broersen, B. Wade
- Townsend, John
Abstract
Past literature on managed futures funds has found little evidence that the top performing funds can be predicted. But, the past literature has used small datasets and methods which had little power to reject the null hypothesis of no performance persistence. The objective of this research is to determine whether performance persists for managed futures advisors using large datasets and methods which have power to reject the null hypothesis. We use data from public funds, private funds, and commodity trading advisors (CTAs). The analysis proceeds in four steps. First, a regression approach is used to determine whether after adjusting for changes in overall returns and differences in leverage that funds all have the same mean returns. Second, we use Monte Carlo methods to demonstrate that Elton, Gruber, and Rentzler's methods have little power to reject false null hypotheses and will reject true null hypotheses too often. Third, we conduct an out-of-sample test of various methods of selecting the top funds. Fourth, since we do find some performance persistence, we seek to explain the sources of this performance persistence by using regressions of (a) returns against CTA characteristics, (b) return risk against CTA characteristics, (c) returns against lagged returns, and (d) changes in investment against lagged returns. The performance persistence could exist due to either differences in cost or differences in the skill of the manager. Our results favor skill as the explanation since returns were positively correlated with cost. The performance persistence is statistically significant, but is small relative to the variation in the data (only 2-4% of the total variation). But, the performance persistence is large relative to the mean. Monte Carlo methods showed that the methods used in past research could often not reject false null hypotheses and would reject true null hypotheses too often.
Suggested Citation
Handle:
RePEc:ags:nc8191:285724
DOI: 10.22004/ag.econ.285724
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nc8191:285724. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.farmdoc.illinois.edu/nccc134/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.