IDEAS home Printed from https://ideas.repec.org/p/ags/monebs/267386.html

Testing for ARMA(1,1) Disturbances in the Linear Regression Model

Author

Listed:
  • Rahman, Shahidur
  • King, Maxwell L.

Abstract

Serious alternatives to the AR(1) disturbance model in econometric applications of linear regression include MA(1) disturbances and the sum of independent white noise and AR(1) disturbance components. All three are special cases of ARMA(1,1) processes. This paper reports an empirical power comparison of tests for AR(1), MA(1) and ARMA(1,1) disturbances assuming ARMA(1,1) disturbances. Tests compared include the Durbin-Watson test, the locally best invariant test and various point optimal invariant (POI) tests. The results suggest that the power of the POI test is largely invariant to the choice of AR(1) parameter value at which power is maximized. This conclusion is strengthened by a theoretical result.

Suggested Citation

  • Rahman, Shahidur & King, Maxwell L., "undated". "Testing for ARMA(1,1) Disturbances in the Linear Regression Model," Department of Econometrics and Business Statistics Working Papers 267386, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:ags:monebs:267386
    DOI: 10.22004/ag.econ.267386
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/267386/files/monash-131.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/267386/files/monash-131.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.267386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:monebs:267386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.