IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Modelling Pricing Behavior with Weak A‐Priori Information: Exploratory Approach

  • Russo, Carlo
  • Sabbatini, Massimo
Registered author(s):

    In the absence of reliable a priori information, choosing the appropriate theoretical model to describe an industry’s behavior is a critical issue for empirical studies about market power. A wrong choice may result in model misspecification and the conclusions of the empirical analysis may be driven by the wrong assumption about the behavioral model. This paper develops a methodology aimed to reduce the risk of misspecification bias. The approach is based on the sequential application of a sliced inverse regression (SIR) and a nonparametric Nadaraya‐Watson regression (NW). The SIR‐NW algorithm identifies the factors affecting pricing behavior in an industry and provides a nonparametric characterization of the function linking these variables to price. This information may be used to guide the choice of the model specification for a parametric estimation of market power. The SIR‐NW algorithm is designed to complement the estimation of structural models of market behavior, rather than to replace it. The value of this methodology for empirical industrial organization studies lies in its data‐driven approach that does not rely on prior knowledge of the industry. The method reverses the usual hypothesis‐testing approach. Instead of first choosing the model based on a priori information and then testing if it is compatible with the data, the econometrician selects a theoretical model based on the observed data. Thus, the methodology is particularly suited for those cases where the researcher has no a priori information about the behavioral model, or little confidence in the information that is available .

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://purl.umn.edu/100478
    Download Restriction: no

    Paper provided by International European Forum on Innovation and System Dynamics in Food Networks in its series 2010 Internatonal European Forum, February 8-12, 2010, Innsbruck-Igls, Austria with number 100478.

    as
    in new window

    Length:
    Date of creation: Oct 2010
    Date of revision:
    Handle: RePEc:ags:iefi10:100478
    Contact details of provider: Web page: http://www.fooddynamics.org/

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ags:iefi10:100478. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.