IDEAS home Printed from https://ideas.repec.org/p/ags/hebarc/18443.html
   My bibliography  Save this paper

Production Risk and the Estimation of Ex Ante Cost Functions

Author

Listed:
  • Moschini, GianCarlo

Abstract

Cost function estimation under production uncertainty is problematic because the relevant cost is conditional on unobservable expected output. If input demand functions are also stochastic, then a nonlinear errors-in-variables model is obtained and standard estimation procedures typically fail to attain consistency. But by exploiting the full implications of the expected profit maximization hypothesis that gives rise to ex ante cost functions, it is shown that the errors-in-variables problem can be effectively removed, and consistent estimation of the parameters of interest can be achieved. A Monte Carlo experiment illustrates the advantages of the proposed procedure as well as the pitfalls of other existing estimators.

Suggested Citation

Handle: RePEc:ags:hebarc:18443
DOI: 10.22004/ag.econ.18443
as

Download full text from publisher

File URL: https://ageconsearch.umn.edu/record/18443/files/wp000262.pdf
Download Restriction: no

File URL: https://libkey.io/10.22004/ag.econ.18443?utm_source=ideas
LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
---><---

More about this item

Keywords

;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:hebarc:18443. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.