IDEAS home Printed from https://ideas.repec.org/p/ags/aaea11/103771.html
   My bibliography  Save this paper

Sample Size and Robustness of Inferences from Logistic Regression in the Presence of Nonlinearity and Multicollinearity

Author

Listed:
  • Bergtold, Jason S.
  • Yeager, Elizabeth A.
  • Featherstone, Allen M.

Abstract

The logistic regression models has been widely used in the social and natural sciences and results from studies using this model can have significant impact. Thus, confidence in the reliability of inferences drawn from these models is essential. The robustness of such inferences is dependent on sample size. The purpose of this study is to examine the impact of sample size on the mean estimated bias and efficiency of parameter estimation and inference for the logistic regression model. A number of simulations are conducted examining the impact of sample size, nonlinear predictors, and multicollinearity on substantive inferences (e.g. odds ratios, marginal effects) and goodness of fit (e.g. pseudo-R2, predictability) of logistic regression models. Findings suggest that sample size can affect parameter estimates and inferences in the presence of multicollinearity and nonlinear predictor functions, but marginal effects estimates are relatively robust to sample size.

Suggested Citation

  • Bergtold, Jason S. & Yeager, Elizabeth A. & Featherstone, Allen M., 2011. "Sample Size and Robustness of Inferences from Logistic Regression in the Presence of Nonlinearity and Multicollinearity," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103771, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea11:103771
    DOI: 10.22004/ag.econ.103771
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/103771/files/Bergtold%20et%20al.%20Logit%20Bias%20Paper.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.103771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dwivedi Alok Kumar & Mallawaarachchi Indika & Figueroa-Casas Juan B. & Morales Angel M. & Tarwater Patrick, 2015. "Multinomial Logistic Regression Approach for the Evaluation of Binary Diagnostic Test in Medical Research," Statistics in Transition New Series, Polish Statistical Association, vol. 16(2), pages 203-222, June.
    2. Angel M. Morales & Patrick Tarwater & Indika Mallawaarachchi & Alok Kumar Dwivedi & Juan B. Figueroa-Casas, 2015. "Multinomial logistic regression approach for the evaluation of binary diagnostic test in medical research," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 203-222, June.
    3. Alok Kumar Dwivedi & Indika Mallawaarachchi & Juan B. Figueroa-Casas & Angel M. Morales & Patrick Tarwater, 2015. "Multinomial Logistic Regression Approach For The Evaluation Of Binary Diagnostic Test In Medical Research," Statistics in Transition New Series, Polish Statistical Association, vol. 16(2), pages 203-222, June.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea11:103771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.