IDEAS home Printed from https://ideas.repec.org/p/aep/anales/4784.html
   My bibliography  Save this paper

Modelos de Nowcasting para el pronóstico de la actividad económica mensual argentina

Author

Listed:
  • Carrera Gonzalo

Abstract

El Producto Bruto Interno (PBI) es la mejor medida para cuantificar la riqueza flujo de una nación. En Argentina, este dato se publica con un rezago de 70 a 80 días tras el cierre del trimestre. Como anticipo, el INDEC difunde el EMAE, el cual converge al PBI pero demora entre 50 a 60 días después del mes de referencia. En un contexto de alta inestabilidad e incertidumbre, este retardo limita su utilidad como insumo para la toma de decisiones. El objetivo de este trabajo es anticipar, con 30 días de antelación a lo publicado por el INDEC, la variación interanual del EMAE y del EMAE sin Agropecuario. Para ello se aplicaron técnicas de Nowcasting (modelos econométricos y de machine learning) con 44 variables predictoras de la economía argentina. Se probaron seis métodos: un modelo Autorregresivo de Rezagos Distribuidos (ARDL), tres de machine learning (Lasso, Ridge y Elastic Net) y dos de selección de parámetros (General-to-Specific, GETS, y Global Search Regression, GSR). Lasso arrojó el menor error en dos de tres métricas y lideró en ambas variables objetivo. El GETS mostró buen desempeño, mientras que Ridge se destacó en el EMAE no Agropecuario y el ARDL en EMAE.

Suggested Citation

  • Carrera Gonzalo, 2025. "Modelos de Nowcasting para el pronóstico de la actividad económica mensual argentina," Asociación Argentina de Economía Política: Working Papers 4784, Asociación Argentina de Economía Política.
  • Handle: RePEc:aep:anales:4784
    as

    Download full text from publisher

    File URL: https://aaep.org.ar/works/works2025/4784.pdf
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aep:anales:4784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juan Manuel Quintero (email available below). General contact details of provider: https://edirc.repec.org/data/aaeppea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.