Report NEP-BIG-2020-11-02
This is the archive for NEP-BIG, a report on new working papers in the area of Big Data. Tom Coupé issued this report. It is usually issued weekly.Subscribe to this report: email, RSS, or Mastodon, or Bluesky.
Other reports in NEP-BIG
The following items were announced in this report:
- Metod Jazbec & Barna P'asztor & Felix Faltings & Nino Antulov-Fantulin & Petter N. Kolm, 2020. "On the impact of publicly available news and information transfer to financial markets," Papers 2010.12002, arXiv.org.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Klaus Ackermann & Alexey Chernikov & Nandini Anantharama & Miethy Zaman & Paul A Raschky, 2020. "Object Recognition for Economic Development from Daytime Satellite Imagery," SoDa Laboratories Working Paper Series 2020-02, Monash University, SoDa Laboratories.
- Andrii Babii & Xi Chen & Eric Ghysels & Rohit Kumar, 2020. "Binary Choice under Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Algorithmic Fairness," Papers 2010.08463, arXiv.org, revised Nov 2025.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," MetaArXiv haf2v, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawRxiv kczj5, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," EdArXiv 5dwrt, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," SocArXiv 9vdwf, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," Thesis Commons auyvc, Center for Open Science.
- Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
- Chipidza, Wallace & Yan, Jie, 2020. "Does Flagging POTUS’s Tweets Lead to Fewer or More Retweets? Preliminary Evidence from Machine Learning Models," SocArXiv 69hkb, Center for Open Science.
- Miguel Baritto & Md Mashum Billal & S. M. Muntasir Nasim & Rumana Afroz Sultana & Mohammad Arani & Ahmed Jawad Qureshi, 2020. "Supporting Tool for The Transition of Existing Small and Medium Enterprises Towards Industry 4.0," Papers 2010.12038, arXiv.org.
- Krotova, Alevtina & Mertens, Armin & Scheufen, Marc, 2020. "Open data and data sharing: An economic analysis," IW policy papers 21/2020, Institut der deutschen Wirtschaft (IW) / German Economic Institute.
- Roland Hodler & Michael Lechner & Paul A. Raschky, 2020. "Reassessing the Resource Curse using Causal Machine Learning," SoDa Laboratories Working Paper Series 2020-01, Monash University, SoDa Laboratories.
- João Amador & Tiago Alves, 2020. "Assessing the Scoreboard of the EU Macroeconomic Imbalances Procedure: (Machine) Learning from Decisions," Working Papers w202016, Banco de Portugal, Economics and Research Department.
- Dickinson, Jeffrey, 2020. "Planes, Trains, and Automobiles: What Drives Human-Made Light?," MPRA Paper 103504, University Library of Munich, Germany.
- Klaus Ackermann & Simon D. Angus & Paul A. Raschky, 2020. "Estimating Sleep & Work Hours from Alternative Data by Segmented Functional Classification Analysis (SFCA)," Papers 2010.08102, arXiv.org.
- Fumihiko Isada, 0000. "Position in inter-organizational networks and profitability and growth potential," Proceedings of International Academic Conferences 11713169, International Institute of Social and Economic Sciences.
- Belloc, Filippo & Burdin, Gabriel & Landini, Fabio, 2020. "Robots and Worker Voice: An Empirical Exploration," IZA Discussion Papers 13799, Institute of Labor Economics (IZA).
- Tahir Miriyev & Alessandro Contu & Kevin Schafers & Ion Gabriel Ion, 2020. "Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC market," Papers 2010.08400, arXiv.org.
- Mike Ludkovski & Yuri Saporito, 2020. "KrigHedge: Gaussian Process Surrogates for Delta Hedging," Papers 2010.08407, arXiv.org, revised Jan 2022.
- Wilde, Joshua & Chen, Wei & Lohmann, Sophie, 2020. "COVID-19 and the Future of US Fertility: What Can We Learn from Google?," IZA Discussion Papers 13776, Institute of Labor Economics (IZA).
- Wilde, Joshua & Chen, Wei & Lohmann, Sophie, 2020. "COVID-19 and the Future of US Fertility: What Can We Learn from Google?," SocArXiv 2bgqs, Center for Open Science.
- Gloria Gheno, 0000. "An new algorithm for citation analysis," Proceedings of International Academic Conferences 11113161, International Institute of Social and Economic Sciences.
- Xing Yan & Weizhong Zhang & Lin Ma & Wei Liu & Qi Wu, 2020. "Parsimonious Quantile Regression of Financial Asset Tail Dynamics via Sequential Learning," Papers 2010.08263, arXiv.org.
- David Salvetat & Jean-Sébastien Lacam, 2020. "Data determinants of the activity of SMEs automobile dealers," Post-Print hal-02965540, HAL.
- Huwe, Vera & Gessner, Johannes, 2020. "Are there rebound effects from electric vehicle adoption? Evidence from German household data," ZEW Discussion Papers 20-048, ZEW - Leibniz Centre for European Economic Research.
- Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
Printed from https://ideas.repec.org/n/nep-big/2020-11-02.html