IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-319-52425-2_8.html
   My bibliography  Save this book chapter

Generation of Non-synchronous Earthquake Signals

In: Risk and Reliability Analysis: Theory and Applications

Author

Listed:
  • Davide Lavorato

    (University of Roma Tre)

  • Ivo Vanzi

    (University “G. d’ Annunzio”)

  • Camillo Nuti

    (University of Roma Tre)

  • Giorgio Monti

    (Sapienza University of Rome)

Abstract

In this chapter, we describe two procedures to generate earthquake asynchronous signals at different space points for the same seismic event. The foundations of long structures, such as bridges, are placed at distant space points. The earthquake signals at these points have different characteristics and their correct evaluation is important to define design actions. However, design codes around the world do not consider this complex type of action in a consistent manner. The point-to-point signal variation is due both to time lag, since the seismic waves move through the soils with a finite velocity among distant points, and to a change of the signal frequency contents. This depends on physical complex soil-wave interaction phenomena during wave propagation (reflection, refraction, filtering, amplification, etc.). In this chapter, two different generation procedures (PR1 and PR2) to determine the non-synchronous actions at different surface points are shown. Both procedures have been implemented in MATLAB. PR1 generates asynchronous signals at the soil surface. It starts from recorded signals at a few surface points for the same seismic event. PR2 produces asynchronous surface signals by amplifying the bedrock signals obtained by a bedrock propagation process. The inputs for the bedrock propagation are obtained via deconvolution of the recorded surface signals. These latter are also the inputs of the PR1 procedure. Detailed knowledge of soil characteristics is required (soil layers, shear wave velocity profiles, soil density, nonlinear materials shear moduli and damping curves), which relies on in situ tests. Deconvolution and amplification processes are performed by Equivalent-Linear Earthquake Site Response (1D soil model, SHAKE91 (Schnabel et al. 1972) and EERA (Bardet et al. 2000)). PR1 and PR2 are then applied to an example case. Asynchronous surface signals are generated at eight foundation points of a bridge placed in the Aterno Valley near the city of L’Aquila in Italy, where recordings are available at different recording stations (AQA and AQV) for the same earthquake. The EW component of the strong main shock of 4-6-2009 in L’Aquila is selected as input for the two procedures. Finally, the comparison between the signals resulting by PR1 and PR2 and the input signals recorded at the same points is discussed in term of effects on the structures (acceleration response spectrum) and characteristics of the generated signals (Fourier amplitude spectra, coherences for each frequency) to evaluate the differences between the two procedures and between the procedures and the actually recorded signals.

Suggested Citation

  • Davide Lavorato & Ivo Vanzi & Camillo Nuti & Giorgio Monti, 2017. "Generation of Non-synchronous Earthquake Signals," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 169-198, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-319-52425-2_8
    DOI: 10.1007/978-3-319-52425-2_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-319-52425-2_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.