IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-031-55048-5_13.html
   My bibliography  Save this book chapter

Software Defect Prediction Using Abstract Syntax Trees Features and Object—Oriented Metrics

Author

Listed:
  • Anushka Sethi

    (Delhi Technological University)

  • Aseem Sangalay

    (Delhi Technological University)

  • Ruchika Malhotra

    (Delhi Technological University)

Abstract

Bug prediction systems have developed to assist developers in prioritizing testing tasks as software releases become more frequent due to changing requirements. Previous studies used methods such as classifying modules as faulty or not, or performing multi-class classification to predict the number of bugs. Some studies used Object-Oriented (OO) metrics, while others used Abstract Syntax Trees (ASTs) to extract code features for bug prediction. This research treated bug prediction as a regression problem and used deep learning models, such as LSTM and CNN, to solve it. The study compared the results of LSTM and CNN models trained on OO metrics with classical machine learning models and a multilayer perceptron model, and found that their LSTM model performed better in terms of MAE and MRE than three of the classical models. The LSTM and CNN models were also trained on features extracted from file-level ASTs of the source code of projects and compared with the models trained on OO metrics. The CNN model trained on file-level AST features produced MAE results similar to the LSTM model trained on OO metrics, but outperformed it in terms of MRE.

Suggested Citation

  • Anushka Sethi & Aseem Sangalay & Ruchika Malhotra, 2024. "Software Defect Prediction Using Abstract Syntax Trees Features and Object—Oriented Metrics," Springer Series in Reliability Engineering,, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-031-55048-5_13
    DOI: 10.1007/978-3-031-55048-5_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-031-55048-5_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.