IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-031-26708-6_4.html
   My bibliography  Save this book chapter

Advanced Flip Chip Packaging

In: Interconnect Reliability in Advanced Memory Device Packaging

Author

Listed:
  • Chong Leong, Gan

    (Micron Memory Taiwan Co. Ltd.)

  • Chen-Yu, Huang

    (Micron Memory Taiwan Co. Ltd.)

Abstract

Flip Chip (FC) technology has been introduced for over 50 years (by IBM in the early 1960s), which is widely used for electronic packaging due to some benefits like smaller form factor, higher UPH (Units Per Hours), direct thermal dissipation path and good electronic performance. With the continued downscaling of device transistor dimension followed by the shrunk interconnection pitch, there are various interconnection types used in flip chip packages are also continuously developed for better reliability performance. As of now, these types have an evolution from C4 (Controlled Collapse of Chip Connection) to Cu pillar and further to micro-Cu pillar bumps. In general, flip chip interconnection using solder bump has an excellent yield due to the self-alignment characteristic of solder material. However, its high solder volume gives some design limitations and consideration for its reliability performance. From assembly perspective, the C4 interconnection with narrower pitch design is not recommended due to the larger space needed for the spherical solder ball, high bridging risk and the concern on effective current-flow path, which lead to Cu pillar bumps become the mainstream of a first-level, advanced FC package interconnect. Furthermore, the micro-Cu pillar bump (or called micro bump) for advanced interconnection pitch required for heterogeneous integration such as GPU (Graphics Processing Unit) and HBM (High Bandwidth Memory) in 2.5D packages, have been already applied for over 10 years. This Chapter will introduce these flip chip packaging technology, the relative assembly processes and the reliability challenges for memory relative packages.

Suggested Citation

  • Chong Leong, Gan & Chen-Yu, Huang, 2023. "Advanced Flip Chip Packaging," Springer Series in Reliability Engineering, in: Interconnect Reliability in Advanced Memory Device Packaging, chapter 0, pages 67-94, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-031-26708-6_4
    DOI: 10.1007/978-3-031-26708-6_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-031-26708-6_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.