IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-031-02063-6_5.html
   My bibliography  Save this book chapter

Assessment of Security Defense of Native Programs Against Software Faults

In: System Dependability and Analytics

Author

Listed:
  • Keun Soo Yim

    (Google, Alphabet Inc., attn yim)

Abstract

This chapter explores the possibility of building a unified assessment methodology for software reliability and security. The fault injection methodology originally designed for reliability assessment is extended to quantify and characterize the security defense aspect of native applications. Native application refers to system software written in C/C++ programming language. Specifically, software fault injection is used to measure the portion of injected software faults caught by the built-in error detection mechanisms of a target program (e.g., the detection coverage of assertions). To automatically activate as many injected faults as possible, a gray box fuzzing technique is used. Using dynamic analyzers during fuzzing further helps us catch the critical error propagation paths of injected (but undetected) faults, and identify code fragments as targets for security hardening. Because conducting software fault injection experiments for fuzzing is an expensive process, a novel, locality-based fault selection algorithm is presented. The presented algorithm increases the fuzzing failure ratios by 3–19 times, accelerating the speed of experiment. The case studies use all the above experimental techniques in order to compare the effectiveness of fuzzing and testing, and consequently assess the security defense of native benchmark programs.

Suggested Citation

  • Keun Soo Yim, 2023. "Assessment of Security Defense of Native Programs Against Software Faults," Springer Series in Reliability Engineering, in: Long Wang & Karthik Pattabiraman & Catello Di Martino & Arjun Athreya & Saurabh Bagchi (ed.), System Dependability and Analytics, pages 69-98, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-031-02063-6_5
    DOI: 10.1007/978-3-031-02063-6_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-031-02063-6_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.