IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-030-83819-5_1.html
   My bibliography  Save this book chapter

Introduction to Control Charts and Machine Learning for Anomaly Detection in Manufacturing

In: Control Charts and Machine Learning for Anomaly Detection in Manufacturing

Author

Listed:
  • Kim Phuc Tran

    (University of Lille, ENSAIT, GEMTEX)

Abstract

In this chapter, we provide an introduction to Anomaly Detection and potential applications in manufacturing using Control Charts and Machine Learning techniques. We elaborate on the peculiarities of process monitoring and Anomaly Detection with Control Charts and Machine Learning in the manufacturing process and especially in the smart manufacturing contexts. We present the main research directions in this area and summarize the structure and contribution of the book.

Suggested Citation

  • Kim Phuc Tran, 2022. "Introduction to Control Charts and Machine Learning for Anomaly Detection in Manufacturing," Springer Series in Reliability Engineering, in: Kim Phuc Tran (ed.), Control Charts and Machine Learning for Anomaly Detection in Manufacturing, pages 1-6, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-030-83819-5_1
    DOI: 10.1007/978-3-030-83819-5_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ethel García & Rita Peñabaena-Niebles & Maria Jubiz-Diaz & Angie Perez-Tafur, 2022. "Concurrent Control Chart Pattern Recognition: A Systematic Review," Mathematics, MDPI, vol. 10(6), pages 1-31, March.
    2. Wilson Rojas-Preciado & Mauricio Rojas-Campuzano & Purificación Galindo-Villardón & Omar Ruiz-Barzola, 2023. "Control Chart T2Qv for Statistical Control of Multivariate Processes with Qualitative Variables," Mathematics, MDPI, vol. 11(12), pages 1-32, June.
    3. Zulfiqar Ali & Sadia Qamar & Nasrulla Khan & Muhammad Faisal & Saad Sh. Sammen, 2023. "A New Regional Drought Index under X-bar Chart Based Weighting Scheme – The Quality Boosted Regional Drought Index (QBRDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1895-1911, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-030-83819-5_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.