IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-642-37113-4_7.html
   My bibliography  Save this book chapter

Tree Methods

Author

Listed:
  • Stéphane Crépey

    (Université d’Evry Val d’Essone)

Abstract

Tree pricing schemes are natural in finance because of their Markov chain interpretation as discrete time pricing models. From a practical point of view, trees are often rather obsolete as compared with more sophisticated finite difference or finite element technologies. However, in a number of situations, they remain an adequate and simple alternative. Moreover, from the theoretical point of view, the Markov chain interpretation underlies interesting probabilistic convergence proofs of the related (deterministic) pricing schemes. Note that there is no hermetic frontier between deterministic and stochastic pricing schemes. In essence, all these numerical schemes are based on the idea of propagating the solution, starting from a surface of the time-space domain on which it is known (the maturity of the derivative), along suitable (random) “characteristics” of the problem (here “characteristics” refers to Riemann’s method for solving hyperbolic first-order equations). From the point of view of control theory, all these numerical schemes can be viewed as variants of Bellman’s dynamic programming principle. Monte Carlo pricing schemes may thus be regarded as one-time-step multinomial trees, converging to a limiting jump diffusion when the number of space discretization points (tree branches) goes to infinity. The difference between a tree method in the usual sense and a Monte Carlo method is that a Monte Carlo computation mesh is stochastically generated and nonrecombining.

Suggested Citation

Handle: RePEc:spr:sprfcp:978-3-642-37113-4_7
DOI: 10.1007/978-3-642-37113-4_7
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Keywords

;
;
;
;
;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-642-37113-4_7. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.