IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-642-37113-4_11.html
   My bibliography  Save this book chapter

Simulation/Regression Pricing Schemes in Pure Jump Setups

Author

Listed:
  • Stéphane Crépey

    (Université d’Evry Val d’Essone)

Abstract

In this chapter we devise simulation/regression numerical schemes in pure jump models. There the idea is to perform the nonlinear regressions, used for computing conditional expectations, in the time variable for a given state of the model rather than in the space variables at a given time in the diffusive setups of Chap. 10 . This idea is stated in the form of a generic lemma that is valid in any continuous-time Markov chain model. This is then tested in the context of two credit risk applications, the first of which values the sensitivities of a CDO tranche in a homogeneous groups model of portfolio credit risk by Monte Carlo without resimulation. The second computes by Monte Carlo the CVA on a CDO tranche in a common shock model of counterparty credit risk. CVA stands for credit valuation adjustment, the correction in value to a derivative accounting for the default risk of your counterparty, a topical issue since the crisis. But wait: are you perfect yourself? Isn’t it so that most Western banks nowadays quote at a few hundreds of basis points of credit spread? This means that you should also account for your own default risk in the valuation, otherwise I doubt many clients would agree to deal with you—which implies the related nonlinear funding struggle that if you are credit risky, the funding of your position will involve (at least) two rates, a lending and a borrowing one. Now, quiz to the reader (not answered in this chapter, and in fact nowhere else either): how would you price nonlinear funding costs on a very high-dimensional and discrete underlying like a CDO tranche?

Suggested Citation

Handle: RePEc:spr:sprfcp:978-3-642-37113-4_11
DOI: 10.1007/978-3-642-37113-4_11
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Keywords

;
;
;
;
;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-642-37113-4_11. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.