IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-642-37113-4_1.html
   My bibliography  Save this book chapter

Some Classes of Discrete-Time Stochastic Processes

Author

Listed:
  • Stéphane Crépey

    (Université d’Evry Val d’Essone)

Abstract

The most important mathematical tools in pricing and hedging applications are certainly martingale and Markov properties. Martingality can be stated as a stochastic equation written in terms of conditional expectations. The Markov property can be stated in terms of deterministic semi-group Kolmogorov equations. The tower rule for conditional expectations and Markovian semi-group equations can be considered as primary dynamic programming pricing equations, in their stochastic and deterministic form (to mature as stochastic pricing BSDEs and deterministic pricing PIDEs later in the book). Practically speaking, a Markov property is a necessary companion to a martingale condition in order to ensure tractability (up to “the curse of dimensionality”). From an opposite perspective, martingales can be used to pursue some theoretical developments beyond a Markov setup. It’s interesting to note that historically, stochastic calculus was first developed as a tool for the study of Markov processes, until it was realized that the theory of martingales, in particular, was interesting for its own sake, allowing one to supersede Markovianity. To emphasize these fundamental ideas at the simplest possible level of technicality, we present them in this first chapter in discrete time. We start with the definition and main properties of conditional expectation. The former is in fact mainly useful to prove the latter (which we leave to standard probability textbooks), since most practical conditional expectation computations are directly based on these properties, with the tower rule as a most emblematic example. We then introduce discrete time Markov chains and martingales in this spirit and with finance already in mind—basing most of our examples on random walks fortune processes, like with the doubling strategy, which grants a wealth of one for sure in the end but with values that are unbounded from below on the way!

Suggested Citation

Handle: RePEc:spr:sprfcp:978-3-642-37113-4_1
DOI: 10.1007/978-3-642-37113-4_1
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Keywords

;
;
;
;
;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-642-37113-4_1. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.