IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-642-35401-4_4.html
   My bibliography  Save this book chapter

European Options in BS Markets

Author

Listed:
  • Norbert Hilber

    (Zurich University of Applied Sciences)

  • Oleg Reichmann

    (Swiss Federal Institute of Technology (ETH))

  • Christoph Schwab

    (Swiss Federal Institute of Technology (ETH))

  • Christoph Winter

    (Allianz Deutschland AG)

Abstract

In the last chapters, we explained various methods to solve partial differential equations. These methods are now applied to obtain the price of a European option. We assume that the stock price follows a geometric Brownian motion and show that the option price satisfies a parabolic PDE. The unbounded log-price domain is localized to a bounded domain and the error incurred by the truncation is estimated. It is shown that the variational formulation has a unique solution and the discretization schemes for finite element and finite differences are derived. Furthermore, we describe extensions of the Black–Scholes model, like the constant elasticity of variance (CEV) and the local volatility model.

Suggested Citation

Handle: RePEc:spr:sprfcp:978-3-642-35401-4_4
DOI: 10.1007/978-3-642-35401-4_4
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Keywords

;
;
;
;
;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-642-35401-4_4. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.