IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-642-31742-2_17.html
   My bibliography  Save this book chapter

The Empirical Properties of Large Covariance Matrices

Author

Listed:
  • Gilles Zumbach

    (Consulting in Financial Research)

Abstract

The knowledge acquired on single financial time series can now be applied to study the multivariate case. The first objective is to understand the generic properties of the covariance and correlation matrices. The definition of the covariance matrix uses the univariate long-memory kernel, hence providing the best short-term forecast suitable to build processes. The eigenvalue decomposition of the covariance matrix is presented, in order to study the properties of the spectrum and eigenvectors. For financial data, the dynamics of the eigenvalues is studied and compared to analytical results obtained from random matrix theory, while the eigenvectors dynamics point to the absence of clear invariant subspaces that would correspond to the established market modes.

Suggested Citation

Handle: RePEc:spr:sprfcp:978-3-642-31742-2_17
DOI: 10.1007/978-3-642-31742-2_17
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Keywords

;
;
;
;
;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-642-31742-2_17. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.