IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-642-14200-0_5.html
   My bibliography  Save this book chapter

Mathematical Theory for General Moral Hazard Problems

Author

Listed:
  • Jakša Cvitanić

    (California Institute of Technology
    EDHEC Business School)

  • Jianfeng Zhang

    (University of Southern California)

Abstract

This chapter describes a general theory of optimal contracting with hidden or non-contractable actions in continuous-time, developed by applying the stochastic maximum principle. The main modeling difference with respect to the full information case is that we will now assume that the agent controls the distribution of the output process with his effort. Mathematically, this is modeled using the so-called “weak formulation” and “weak solutions” of the underlying SDEs. Necessary and sufficient conditions are derived in terms of the so-called adjoint processes and corresponding Forward-Backward SDEs. These processes typically include the output process, the agent’s expected utility process, the principal’s expected utility process, and the ratio of marginal utilities process.

Suggested Citation

Handle: RePEc:spr:sprfcp:978-3-642-14200-0_5
DOI: 10.1007/978-3-642-14200-0_5
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Keywords

;
;
;
;
;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-642-14200-0_5. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.