IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-031-97239-3_5.html
   My bibliography  Save this book chapter

Signature Maximum Mean Discrepancy Two-Sample Statistical Tests

In: Signature Methods in Finance

Author

Listed:
  • Andrew Alden

    (King’s College London)

  • Blanka Horvath

    (University of Oxford
    University of Oxford)

  • Zacharia Issa

    (King’s College London)

Abstract

Maximum Mean Discrepancy (MMD) is a widely used concept in machine learning research which has gained popularity in recent years as a highly effective tool for comparing (finite-dimensional) distributions. Since it is designed as a kernel-based method, the MMD can be extended to path space valued distributions using the signature kernel. The resulting signature MMD (sig-MMD) can be used to define a metric between distributions on path space. Similarly to the original use case of the MMD as a test statistic within a two-sample testing framework, the sig-MMD can be applied to determine if two sets of paths are drawn from the same stochastic process. This chapter is dedicated to understanding the possibilities and challenges associated with applying the sig-MMD as a statistical tool in practice. We introduce and explain the sig-MMD, and provide easily accessible and verifiable examples for its practical use. We present examples that can lead to Type 2 errors in the hypothesis test, falsely indicating that samples have been drawn from the same underlying process (which generally occurs in a limited data setting). We then present techniques to mitigate the occurrence of this type of error.

Suggested Citation

  • Andrew Alden & Blanka Horvath & Zacharia Issa, 2026. "Signature Maximum Mean Discrepancy Two-Sample Statistical Tests," Springer Finance, in: Christian Bayer & Goncalo dos Reis & Blanka Horvath & Harald Oberhauser (ed.), Signature Methods in Finance, pages 161-195, Springer.
  • Handle: RePEc:spr:sprfcp:978-3-031-97239-3_5
    DOI: 10.1007/978-3-031-97239-3_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-031-97239-3_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.