IDEAS home Printed from https://ideas.repec.org/h/spr/sprfcp/978-3-031-97239-3_1.html
   My bibliography  Save this book chapter

A Primer on the Signature Method in Machine Learning

In: Signature Methods in Finance

Author

Listed:
  • Ilya Chevyrev

    (SISSA
    Mathematical Institute, University of Oxford)

  • Andrey Kormilitzin

    (University of Oxford)

Abstract

We provide an introduction to the signature method, focusing on its theoretical properties and machine learning applications. Our presentation is divided into two parts. In the first part, we present the definition and fundamental properties of the signature of a path. The signature is a sequence of numbers associated with a path that captures many of its important analytic and geometric properties. As a sequence of numbers, the signature serves as a compact description (dimension reduction) of a path. In presenting its theoretical properties, we assume only familiarity with classical real analysis and integration, and supplement theory with straightforward examples. We also mention several advanced topics, including the role of the signature in rough path theory. In the second part, we present practical applications of the signature to the area of machine learning. The signature method is a non-parametric way of transforming data into a set of features that can be used in machine learning tasks. In this method, data are converted into multi-dimensional paths, by means of embedding algorithms, of which the signature is then computed. We describe this pipeline in detail, making a link with the properties of the signature presented in the first part. We furthermore review some of the developments of the signature method in machine learning and, as an illustrative example, present a detailed application of the method to handwritten digit classification.

Suggested Citation

  • Ilya Chevyrev & Andrey Kormilitzin, 2026. "A Primer on the Signature Method in Machine Learning," Springer Finance, in: Christian Bayer & Goncalo dos Reis & Blanka Horvath & Harald Oberhauser (ed.), Signature Methods in Finance, pages 3-64, Springer.
  • Handle: RePEc:spr:sprfcp:978-3-031-97239-3_1
    DOI: 10.1007/978-3-031-97239-3_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprfcp:978-3-031-97239-3_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.