IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-99-2738-8_4.html
   My bibliography  Save this book chapter

Completeness

In: A Comprehensive Textbook on Metric Spaces

Author

Listed:
  • Surinder Pal Singh Kainth

    (Panjab University, Department of Mathematics)

Abstract

Roughly speaking, a metric space X is complete if every sequence in X, which attempts to converge, finds a buddy in X for that purpose. In other words, X is incomplete if it lacks some ‘good’ points. However, it is always possible to extend an incomplete space to a complete one, by appending all such missing ‘good’ points. This chapter starts with a brief introduction to complete metric spaces, followed by its most important application; the Banach Contraction Principle. Then we provide various characterizations of completeness, in terms of Cantor intersection property and totally bounded sets. The completion of a metric space is discussed in a separate section where we establish that the Cauchy completion of $$\mathbb {Q}$$ is isometric to its Dedekind completion. Finally, we present various Banach spaces, including the space of continuous functions, and some results regarding absolute and unconditional convergence.

Suggested Citation

  • Surinder Pal Singh Kainth, 2023. "Completeness," Springer Books, in: A Comprehensive Textbook on Metric Spaces, chapter 0, pages 89-121, Springer.
  • Handle: RePEc:spr:sprchp:978-981-99-2738-8_4
    DOI: 10.1007/978-981-99-2738-8_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-99-2738-8_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.