IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-96-6839-7_13.html
   My bibliography  Save this book chapter

Discovering Interlinkages Between Major Cryptocurrencies Using High-Frequency Data: New Evidence from COVID-19 Pandemic

In: Blockchain, Crypto Assets, and Financial Innovation

Author

Listed:
  • Imran Yousaf

    (Prince Sultan University
    Air University)

  • Shoaib Ali

    (Air University)

Abstract

Through the application of the VAR-AGARCH model to intra-day data for three cryptocurrencies (Bitcoin, Ethereum, and Litecoin), this study examines the return and volatility spillover between these cryptocurrencies during the pre-COVID-19 period and the COVID-19 period. We also estimate the optimal weights, hedge ratios, and hedging effectiveness during both sample periods. We find that the return spillovers vary across the two periods for the Bitcoin-Ethereum, Bitcoin-Litecoin, and Ethereum-Litecoin pairs. However, the volatility transmissions are found to be different during the two sample periods for the Bitcoin-Ethereum and Bitcoin-Litecoin pairs. The constant conditional correlations between all pairs of cryptocurrencies are observed to be higher during the COVID-19 period compared to the pre-COVID-19 period. Based on optimal weights, investors are advised to decrease their investments (a) in Bitcoin for the portfolios of Bitcoin/Ethereum and Bitcoin/Litecoin and (b) in Ethereum for the portfolios of Ethereum/Litecoin during the COVID-19 period. All hedge ratios are found to be higher during the COVID-19 period, implying a higher hedging cost compared to the pre-COVID-19 period. Last, the hedging effectiveness is higher during the COVID-19 period compared to the pre-COVID-19 period. Overall, these findings provide useful information to portfolio managers and policymakers regarding portfolio diversification, hedging, forecasting, and risk management.

Suggested Citation

  • Imran Yousaf & Shoaib Ali, 2025. "Discovering Interlinkages Between Major Cryptocurrencies Using High-Frequency Data: New Evidence from COVID-19 Pandemic," Springer Books, in: Gang Kou & Yongqiang Li & Zongyi Zhang & J. Leon Zhao & Zhi Zhuo (ed.), Blockchain, Crypto Assets, and Financial Innovation, pages 355-377, Springer.
  • Handle: RePEc:spr:sprchp:978-981-96-6839-7_13
    DOI: 10.1007/978-981-96-6839-7_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-96-6839-7_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.