IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-4585-33-0_7.html
   My bibliography  Save this book chapter

Constructing a Three-Stage Asymptotic Coverage Probability for the Mean Using Edgeworth Second-Order Approximation

In: International Conference on Mathematical Sciences and Statistics 2013

Author

Listed:
  • Ali S. Yousef

    (Middle East University, College of Arts and Sciences)

Abstract

In this paper we consider a three-stage procedure that was presented by Hall (Ann Stat 9(6):1229–1238, 1981) to yield a fixed-width confidence interval for the mean with a precise confidence level using Edgeworth second-order expansion assuming the underlying continuous distribution has finite but unknown six moments. The procedure is based on expanding an asymptotic second order approximation of a differentiable and bounded function of the final stage stopping rule found in Yousef et al. (J Stat Plan Inference 143(9):1606–1618, 2013) by Edgeworth expansion. The performance of the asymptotic coverage was shown to be controlled by the performance of the Edgeworth approximation for the standardized underlying density and thus sensitive to the skewness and kurtosis of the underlying standardized distribution. The impact of several parameters on the asymptotic coverage is explored under continuous classes of distributions; normal, student’s t-distribution, uniform, beta and chi-squared. For brevity, simulation results are given for three types of underlying distributions: standard uniform, standard normal and standard exponential.

Suggested Citation

  • Ali S. Yousef, 2014. "Constructing a Three-Stage Asymptotic Coverage Probability for the Mean Using Edgeworth Second-Order Approximation," Springer Books, in: Adem Kilicman & Wah June Leong & Zainidin Eshkuvatov (ed.), International Conference on Mathematical Sciences and Statistics 2013, edition 127, pages 53-67, Springer.
  • Handle: RePEc:spr:sprchp:978-981-4585-33-0_7
    DOI: 10.1007/978-981-4585-33-0_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-4585-33-0_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.