IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-19-5049-0_6.html
   My bibliography  Save this book chapter

Pareto-Based Guaranteed Cost Control of the Uncertain Mean-Field Stochastic Systems

In: Essays on Pareto Optimality in Cooperative Games

Author

Listed:
  • Yaning Lin

    (Shandong University of Technology, School of Mathematics and Statistics)

  • Weihai Zhang

    (Shandong University of Science and Technology, College of Electrical Engineering and Automation)

Abstract

Pareto-based GCC of the uncertain mean-field stochastic systems is investigated. First, Pareto game of the nominal mean-field stochastic systems is discussed in infinite horizon. Based on the convexity of the cost functionals, all Pareto-efficient strategies can be derived by solving a weighted sum optimal control problem. Then, Pareto-based GCC problem is settled by the GCC of the weighted sum cost functional. Employing the Karush–Kuhn–Tucker (KKT) conditionsKarush-Kuhn-Tucker (KKT) conditions, necessary conditions for the existence of Pareto-based guaranteed cost controllers are derived. In particular, it turns out that all controllers can be expressed as linear feedback forms involving the state and its mean based on the solutions of the cross-coupled stochastic algebraic Riccati equations (CSAREs)Cross-coupled Stochastic Algebraic Riccati Equations (CSAREs). In addition, an LMI-based approach is presented to reduce greatly the computational complexity in the controller design. Finally, three examples are given to show the effectiveness of the proposed results.

Suggested Citation

  • Yaning Lin & Weihai Zhang, 2022. "Pareto-Based Guaranteed Cost Control of the Uncertain Mean-Field Stochastic Systems," Springer Books, in: Essays on Pareto Optimality in Cooperative Games, chapter 0, pages 85-113, Springer.
  • Handle: RePEc:spr:sprchp:978-981-19-5049-0_6
    DOI: 10.1007/978-981-19-5049-0_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-19-5049-0_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.