Author
Listed:
- Hüseyin Kamacı
(Yozgat Bozok University, Faculty of Science and Arts, Department of Mathematics)
- Subramanian Petchimuthu
(University College of Engineering, Department of Science and Humanities (Mathematics))
Abstract
The virtue of the q-rung orthopair fuzzy set inherits those of the intuitionistic fuzzy set and the Pythagorean fuzzy set in loosening the constraint on support and counter-support. The very lax requirement gives the evaluators great freedom in expressing their beliefs about membership degrees and non-membership degrees, which makes q-rung orthopair fuzzy sets having a wide scope of application in practice. A distance measure is an important mathematical tool for distinguishing the difference between q-rung orthopair fuzzy sets and allows to deal with problems such as multi-criteria decision-making, medical diagnosis, and pattern recognition under a q-rung orthopair fuzzy environment. Unfortunately, many of the existing q-rung orthopair fuzzy distance measures have their limitations. To eliminate such restrictions, in this chapter, the Soergel-type distances of q-rung orthopair fuzzy sets are introduced and the basis on which the orthopairs can be ranked is established. The weighted types of the proposed Soergel distances and their corresponding similarity coefficients are derived. In addition, the validity of the emerging distance measures is shown by comparing them with the distance measures described in some recent research studies through numerical examples. Some charts are provided to visually display the various characteristics and to analyze the properties of the proposed distance measures. The outputs verify that these Soergel distance measures of q-rung orthopair fuzzy sets outperform other existing metrics in measuring uncertainty and avoiding counterintuitive cases. Some illustrative examples of decision-making in real life are presented, demonstrating the strong discrimination capability and effectiveness of the proposed Soergel distance measures.
Suggested Citation
Hüseyin Kamacı & Subramanian Petchimuthu, 2022.
"Soergel Distance Measures for q-Rung Orthopair Fuzzy Sets and Their Applications,"
Springer Books, in: Harish Garg (ed.), q-Rung Orthopair Fuzzy Sets, chapter 0, pages 67-107,
Springer.
Handle:
RePEc:spr:sprchp:978-981-19-1449-2_4
DOI: 10.1007/978-981-19-1449-2_4
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-19-1449-2_4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.