IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-19-1449-2_3.html
   My bibliography  Save this book chapter

Decision-Making on Patients’ Medical Status Based on a q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation

In: q-Rung Orthopair Fuzzy Sets

Author

Listed:
  • Paul Augustine Ejegwa

    (University of Agriculture, Department of Mathematics)

Abstract

q-Rung orthopair fuzzy set (qROFS) is a family of generalized fuzzy sets including intuitionistic fuzzy set, Pythagorean fuzzy set, Fermatean fuzzy set among others. q-Rung orthopair fuzzy set has higher prospect of applications in decision science because it can conveniently tackle vague problems that are beyond the reach of the aforementioned generalized fuzzy sets. The concept of composite relation is a very important information measure use to determine multiple criteria decision-making problems. This chapter proposes max-min-max composite relation under q-Rung orthopair fuzzy sets. Some theorems are used to characterize certain salient properties of q-Rung orthopair fuzzy sets. An easy to follow algorithm and flowchart of the q-Rung orthopair fuzzy max-min-max composite relation are presented to illustrate the computational processes. A case of medical decision-making (MDM) is determined in q-Rung orthopair fuzzy environment to demonstrate the applicability of the proposed q-Rung orthopair fuzzy max-min-max composite relation where diseases and patients are presented as q-Rung orthopair fuzzy values in the feature space of certain symptoms. A comparative study of intuitionistic fuzzy set, Pythagorean fuzzy set, Fermatean fuzzy set and q-Rung orthopair fuzzy set based on max-min-max composite relation is carried out to ascertain the superiority of q-Rung orthopair fuzzy set in curbing uncertainties. It is gleaned from the findings of this chapter that (i) a q-Rung orthopair fuzzy set is an advanced soft computing construct with the ability to precisely curb uncertainty compare to intuitionistic fuzzy set, Pythagorean fuzzy set and Fermatean fuzzy set, (ii) a q-Rung orthopair fuzzy max-min-max composite relation is a reliable information measure for determining decision making problems with precision.

Suggested Citation

  • Paul Augustine Ejegwa, 2022. "Decision-Making on Patients’ Medical Status Based on a q-Rung Orthopair Fuzzy Max-Min-Max Composite Relation," Springer Books, in: Harish Garg (ed.), q-Rung Orthopair Fuzzy Sets, chapter 0, pages 47-66, Springer.
  • Handle: RePEc:spr:sprchp:978-981-19-1449-2_3
    DOI: 10.1007/978-981-19-1449-2_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-19-1449-2_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.