Author
Listed:
- Biswa Nath Datta
(Northern Illinois University, Department of Mathematical Sciences
Indian Institute of Technology, Department of Mathematics)
- Biswajit Sahoo
(Indian Institute of Technology, Department of Mechanical Engineering)
Abstract
Machine learning is a subfield of artificial intelligence (AI). While AI is the ability of the machine to think like humans, machine learning is the ability of machine to learn from data without any explicit instructions. Applications of machine learning are abundant: stock-price forecast; face, speech and handwriting recognition; medical diagnosis of diseases like cancer, blood pressure, diabetes, neurological disorders including autism, spinal stenosis and others; and health monitoring, just to name a few. Potential applications of machine learning in solutions to many other complex practical problems are currently being investigated. An ultimate goal of machine learning is to make predictions based on a properly trained model. Two major techniques of supervised machine learning are: statistical regression and classification. For best prediction, the parameters of the model need to be optimized. This is an optimization task. After giving a brief introduction to machine learning and describing the role of regression and optimization, the paper discusses in some detail the basics of regression and optimization methods that are commonly used in machine learning. The paper is interdisciplinary, blending machine learning with statistical regression and numerical linear algebra, and optimization. Thus, it will be of interest to a wide variety of audiences ranging from mathematics, statistics and computer science to various branches of engineering.
Suggested Citation
Biswa Nath Datta & Biswajit Sahoo, 2021.
"Machine Learning, Regression and Optimization,"
Springer Books, in: Bikas Kumar Sinha & Md. Nurul Haque Mollah (ed.), Data Science and SDGs, pages 177-197,
Springer.
Handle:
RePEc:spr:sprchp:978-981-16-1919-9_15
DOI: 10.1007/978-981-16-1919-9_15
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-16-1919-9_15. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.