IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-16-1319-7_18.html
   My bibliography  Save this book chapter

Study of Haze Emission Efficiency Based on New Co-opetition DEA

In: Economic Impacts and Emergency Management of Disasters in China

Author

Listed:
  • Xianhua Wu

    (Shanghai Maritime University
    Nanjing University of Information Science and Technology)

  • Ji Guo

    (Shanghai Maritime University
    Nanjing University of Information Science and Technology)

Abstract

As haze intensifies in China, controlling haze emission has become a top priority in the country’s environment protection endeavor. Since haze moves across different regions, it is necessary to develop a DEA (Data Envelopment Analysis) model underpinned by both competition and cooperation to evaluate the haze emission efficiency in different provinces. This study innovatively adopts the spatial econometrics to construct the co-opetition matrices of Chinese provinces, then builds the co-opetition DEA model that evaluates the haze emission efficiency of them, and finally uses the haze data for 2015 as an example to assess the applicability of the model. The results of the study include: First, compared with the traditional CCR model, this study constructs the co-opetition DEA cross-efficiency model that integrates haze’s feature of cross-border moving, and is thus more in line with the reality of haze emission and movement. Second, compared with the efficiency value gained using the CCR model, the haze emission efficiency values for Tianjin and Guangdong, two decision-making units, register greater variance when using the DEA model. The reason might lie in that they have a different spatial transportation relationship with their surrounding provinces. Third, the haze emission efficiency of provinces, resulting from the evaluation based on the co-opetition DEA method, varies greatly: those with high efficiency are mostly inland provinces that have a slow-growing economy and adverse climatic conditions, while many of the provinces that have low efficiency are located in the relatively prosperous east China. The specific co-opetition DEA model constructed in this study enriches the research on the DEA model, which can be applied to the emission efficiency evaluation of similar pollutants that cross the border and can contribute empirical support to the haze reducing efforts of the government with its empirical results.

Suggested Citation

  • Xianhua Wu & Ji Guo, 2021. "Study of Haze Emission Efficiency Based on New Co-opetition DEA," Springer Books, in: Economic Impacts and Emergency Management of Disasters in China, edition 1, chapter 0, pages 507-545, Springer.
  • Handle: RePEc:spr:sprchp:978-981-16-1319-7_18
    DOI: 10.1007/978-981-16-1319-7_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-16-1319-7_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.